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ABSTRACT OF THESIS 
 
 
 
 

PARAMETRIZATION AND SHAPE RECONSTRUCTION TECHNIQUES FOR 
DOO-SABIN SUBDIVISION SURFACES 

 
 
 This thesis presents a new technique for the reconstruction of a smooth surface 
from a set of 3D data points. The reconstructed surface is represented by an everywhere 

-continuous subdivision surface which interpolates all the given data points. And the 
topological structure of the reconstructed surface is exactly the same as that of the data 
points. The new technique consists of two major steps. First, use an efficient surface 
reconstruction method to produce a polyhedral approximation to the given data points. 
Second, construct a Doo-Sabin subdivision surface that smoothly passes through all the 
data points in the given data set. A new technique is presented for the second step in this 
thesis. The new technique iteratively modifies the vertices of the polyhedral 
approximation 

1C

M  until a new control mesh M , whose Doo-Sabin subdivision surface 
interpolates M , is reached. It is proved that, for any mesh M  with any size and any 
topology, the iterative process is always convergent with Doo-Sabin subdivision scheme. 
The new technique has the advantages of both a local method and a global method, and 
the surface reconstruction process can reproduce special features such as edges and 
corners faithfully. 
 
KEYWORDS: Surface reconstruction, Doo-Sabin subdivision surfaces, interpolation, 
control mesh, polyhedral approximation 
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Chapter 1 Introduction 

The purpose of this thesis is to present an interpolation algorithm that allows a 

user to create a smooth reconstructed surface. This surface is defined and manipulated by 

a structured set of control points generated from the algorithm. The positions of the 

control points will determine the shape of the reconstructed surface. A user only needs to 

know the relationships among the original data points, control points and the 

reconstructed surface rather than the process and mathematics of the underlying 

implementation. 

 Many applications have been developed to represent surfaces. However, the only 

available information on a surface of most existing surface design schemes is a set of 

unorganized points sampled from that surface. This shall be discussed shortly. A set of 

unorganized sampled points can be quite restrictive from the point of view of design. 

This thesis will present a method for reconstructing a smooth surface that is not 

encumbered by this restriction, thereby giving a user more satisfiable and accurate 

shapes.  

In most surface design schemes, computations on that surface require the 

construction of a piecewise linear approximation of the surface on a polynomial basis. 

Piecewise polynomial means that a curve or surface is represented by a collection of 

individual polynomial segments or patches. Before a computation can be performed on 

that surface, a representation of the surface has to be constructed from the sample points 

first, which will be used as control points in part of the implementation. This is the 

problem of surface reconstruction. Problems of this type occur in scientific and 

engineering applications such as CAD, medical imaging, visualization, computer 
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graphics, computer vision, reverse engineering, and so on. Recent advances in modern 

laser technology have made it easier to generate a lot of sample points from the surface of 

an object, but this will result in a large amount of data and more storage space. A 

polyhedral approximation (mostly triangular) to the sampled surface is the goal to 

achieve in surface reconstruction. The reconstructed surface should be topologically 

equivalent to and geometrically close to the sampled surface. Reconstructing surfaces 

from unorganized sample points in a faithful way is still a difficult challenge, even 

though many fast and efficient algorithms proposed in the literature are able to achieve 

topologically correct surface reconstruction in most cases. 

Traditional surface reconstruction methods always produce a set of triangles to 

approximate the surface shape. This usually is not precise enough when small details are 

needed. One can solve the precision problem by increasing the number of points sampled 

in the sampling process. This is possible because recent advances in laser technology 

have made it easier to generate a lot of sample points from the surface of an object. But 

there are occasions where a discrete representation is not good enough no matter how 

many points are used in the representation, such as 3D medical imaging where one needs 

to scale up an organ or a cross-section frequently. Smooth and precise surface 

representation for unorganized data is still needed. Especially in applications that require 

accurate representation. Take 3D medical imaging for example, people need to 

reconstruct surfaces as precisely as possible from range data, which usually are produced 

by laser range scanning systems or MRI. Construction of smooth representation of a 

surface from unorganized data has been studied for a while and some techniques have 
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already been reported [1]. But the techniques do not guarantee interpolation of the sample 

points by the generated representation. 

Control points schemes are generally either interpolating or approximating. The 

choice of which scheme to use depends upon the application. For all applications, the 

scheme should be coordinate free. This means that the relationship between the control 

points and the shape is independent of any coordinate system.  

The shape defined by an approximating scheme will be constructed with polygons 

(most will be triangles). This type of scheme is well suited for local control. This means 

that modifying the shape by moving a control point will not affect the entire shape, i.e., if 

one of the control points is moved to another place, only the polygons owning it move 

with this point. Several such approximating schemes exist; the simplest and best known 

are B-splines (B for basic). The control points of a B-spline scheme are known as de 

Boor points. For B-spline curves, the de Boor points are an ordered set that forms the de 

Boor polygon. These points can be defined by a user. The resulting curve is a smooth 

approximation to the de Boor polygon. Figure 1.1 illustrates the relationship between the 

de Boor points and a B-spline curve. Doo-Sabin approximation method is used in this 

implementation. 

 

Figure 1.1 A B-Spline Curve 
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The shape defined by an interpolating scheme will pass through all of the control 

points. This type of scheme is well suited for representation, i.e., if the control points are 

known to belong to an existing shape. There are a number of interpolation methods. 

Linear interpolation (Figure 1.2) is the simplest method of getting values at positions in 

between the data points. Points are simply joined by straight line segments. Each segment 

(bounded by two data points) can be interpolated independently. The disadvantage of 

linear interpolation is the discontinuities at each point. Cubic interpolation (Figure 1.3) is 

the simplest method that offers true continuity between the segments. As such it requires 

more than just the two endpoints of the segment but also the two points on either side of 

them. Interpolation method used with Doo-Sabin scheme will be presented in this thesis. 

 

Figure 1.2 Linear Interpolation 
 

 

Figure 1.3 Cubic Interpolation 
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Approximation may not be the natural choice for representation while 

interpolation methods may not be the natural choice for local control. In this thesis a 

method, which is a combination of approximation and interpolation, is proposed to 

reconstruct a faithful surface from a set of data points, such that the reconstructed surface 

is not approximately represented by a polyhedron, but by an everywhere -continuous 

subdivision surface. The subdivision surface interpolates all the given data points. 

Besides, the topological structure of the reconstructed surface is exactly the same as that 

of the data points. Therefore, the representation is guaranteed to be precise if the sampled 

points are taken directly from the sampled object. In addition, all the data points are 

guaranteed to lie precisely on the reconstructed surface. This is done in two steps: 

1C

• Use an efficient surface reconstruction method to produce a polyhedral 

approximation to the given sampled points. The polyhedral approximation 

obtained from the sampled points is the control mesh of a Doo-Sabin subdivision 

surface. 

• Iteratively modify this control mesh to get a -continuous subdivision surface to 

interpolate all the sampled points in the given data set. 

1C

While the first step is still a challenging step, it is the second step that is our focus here. 

Constructing a subdivision surface to interpolate an arbitrary mesh is not a well-solved 

problem when the number of vertices is large. So is the second step, especially when the 

number of sampled data points is huge. In this thesis a solution to this problem will be 

proposed, which will focus on how to construct an interpolating surface for the 

polyhedral approximation obtained from the first step. 
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Chapter 2  Conceptual Development 

Background and Related Work 

Surface Reconstruction from Unorganized Points 

A number of applications ranging from CAD, computer graphics and 

mathematical modeling require the reconstruction of a smooth surface from a set of data 

points. The set of data points are the points on the surface which is being sampled. The 

data points could be densely sampled or sparsely taken from the surface such that they 

are the representative points of the surface. Up to now, many techniques have been 

proposed and developed to reconstruct an approximated surface from the set of 3D data 

points. Among them are greedy methods [2], implicit surfaces [3] and Delaunay 

triangulation, etc. However all of them only lead to a non-smooth polyhedral 

approximation to the given data points, or to a smooth surface that does not interpolate 

the input data point set [1]. Therefore without dense sampling of an object surface, none 

of the methods mentioned above can reconstruct the original surface precisely. 

 

Subdivision Surfaces 

Subdivision surfaces are popular now in Computer Animation, CAD and 

Geometric Modeling, etc. The ability to model arbitrary topology surfaces makes them 

more suitable than classical spline surfaces in some applications. The Catmull-Clark 

subdivision scheme [4] was proposed in 1978, which is the generalization of bi-cubic 

spline surface, while the Doo-Sabin subdivision method [5] is the generalization of 

quadratic spline surface. Later, the Loop subdivision scheme [6] was developed for 

triangular meshes which generalize the Box splines. All these three popular subdivision 
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methods are approximating schemes. There are interpolating subdivision schemes that 

interpolate the given mesh. One of the most famous interpolating subdivision methods is 

the butterfly subdivision method [7] which was modified subsequently to generate 

smoother interpolation surfaces in [8]. An interpolating scheme for quadrilateral meshes 

was proposed in [9]. 

 
Surface Interpolation of Irregular Meshes 

Interpolation is a popular technique used in surface design and shape modeling. 

There are plenty of publications dealing with the interpolation problem using various 

surface representations. As the appearance of recursive subdivision surfaces, 

interpolation methods based on subdivision surfaces have also been developed. One 

group of the methods is required to solve a global system of linear equations, like [10, 11]. 

To avoid the computational cost of solving a large system of linear equations, other 

methods have been developed. In [12], an always-working method solved the problem by 

using a two-phase subdivision method. The method proposed in [13] avoids solving a 

system of linear equations by using the concept of similarity. The approach presented in 

[14] avoids solving a system of linear equations by using quasi-interpolation. 

In this thesis, based on the results obtained from traditional surface reconstruction 

methods which produce a polyhedral approximation to the given sample points, we 

present a new iterative interpolation method by using Doo-Sabin subdivision surface. Our 

iterative method is an extension of the progressive iterative interpolation method for B-

splines [15, 16, 17]. The idea of our iterative interpolation method is to use the 

differences between the (original) mesh to be interpolated and the Doo-Sabin surface of 

current mesh to get a new mesh. This iterative process will converge to a Doo-Sabin 
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surface interpolating the original mesh. The updating operation at each level of the 

iteration is done by a local operation for each vertex in current mesh. Therefore our 

method possesses the property of a local method. On the other hand, our method has the 

form of a global method due to its actual global linear effect. Therefore, our method has 

the advantages of both a local method and a global method. Experimental results 

demonstrate the efficiency and ability of our method in handling large meshes. 

 

Definitions 

 In this subsection, several technical words related to the thesis will be explained . 

 

Greedy algorithm 

A greedy algorithm is any algorithm that follows the problem solving 

metaheuristic of making the locally optimum choice at each stage with the hope of 

finding the global optimum. 

For example, applying the greedy strategy to the traveling salesman problem 

yields the following algorithm: "At each stage visit the unvisited city nearest to the 

current city". 

In general, greedy algorithms have five pillars: 

• A candidate set, from which a solution is created 

• A selection function, which chooses the best candidate to be added to the 

solution 

• A feasibility function, that is used to determine if a candidate can be used 

to contribute to a solution 
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• An objective function, which assigns a value to a solution, or a partial 

solution, and 

• A solution function, which will indicate when we have discovered a 

complete solution 

Greedy algorithms produce good solutions to some mathematical problems, but 

not to others. 

 

Implicit Surface 

In mathematical notation, a level set of a real-valued function f of n variables is a 

set of the form 

  }),...,(|),...,{( 11 cxxfxx nn =                                                          (2.1) 

where c is a constant. That is, it is the set where the function takes on a given 

constant value. When the number of variables is two, this is a level curve (contour line), 

if it is three this is a level surface, and for higher values of n the level set is a level 

hypersurface. A level surface is sometimes called an implicit surface or an isosurface. 

A set of the form 

  }),...,(|),...,{( 11 cxxfxx nn ≤                                                          (2.2) 

is called a sublevel set of . f

 

Delaunay triangulation 

In mathematical notation and computational geometry, a Delaunay triangulation 

or Delone triangularization for a set P of points in the plane is a triangulation DT(P) such 

that no point in P is inside the circumcircle of any triangle in DT(P). Delaunay 
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triangulations maximize the minimum angle of all the angles of the triangles in the 

triangulation; they tend to avoid "sliver" triangles. The triangulation was invented by 

Boris Delaunay in 1934.  

 

Subdivision Surfaces 

A subdivision surface, in the field of 3D computer graphics, is a method of 

representing a smooth surface via the specification of a coarser piecewise linear polygon 

mesh. The smooth surface can be calculated from the coarse mesh as the limit of an 

iterative process of subdividing each polygonal face into smaller faces that better 

approximate the smooth surface. 

 

Catmull‐Clark subdivision surface 

The Catmull-Clark algorithm is used in subdivision surface modeling to create 

smooth surfaces. It was devised by Edwin Catmull (of Pixar) and Jim Clark, and won an 

Academy Award for Technical Achievement in 2006.  

 

Doo‐Sabin subdivision surface  

A Doo-Sabin subdivision surface, in the field of computer graphics, is a type of 

subdivision surface based on a generalization of bi-quadratic uniform B-splines. It was 

developed in 1978 by Daniel Doo and Malcolm Sabin. There is a picture of a short 

subdivision process of this algorithm shown in picture 2.1. 
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Figure 2.1 Doo-Sabin Subdivision Surface 
 

Loop subdivision surface 

A Loop subdivision surface is a subdivision scheme developed by Charles Loop 

in 1987 especially for triangular meshes.  

 

Butterfly Subdivision 

The Butterfly Subdivision method is a new interpolatory subdivision scheme for 

surface design. This scheme is designed for a general triangulation of control points and 

has a tension parameter that provides design flexibility. The resulting limit surface is -

continuous for a specified range of the tension parameter, with a few exceptions.  

1C

 

Parameterization   

Parametrization (or parameterization) is the process of defining or deciding the 

'parameters' —usually of some model— that are salient to the question being asked of 

that model. 
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Chapter 3  Methodology 

Subdivision Methods 

The Doo‐Sabin algorithm 

Doo and Sabin invented an algorithm for generating a smooth surface in 1978 [5] 

by generalizing the biquadratic B-spline subdivision rules to include arbitrary topologies. 

The corner clipping notion is used in this algorithm, which can generate smooth surfaces 

from an arbitrary set of control points or mesh. This algorithm can generate a biquadratic 

B-spline surface in the special case of a rectangle mesh. 

The following picture is the subdivision masks of biquadratic B-Splines (Figure 

3.1), which are used to derive the Doo-Sabin algorithm:  

 

 

Figure 3.1 Subdivision masks for biquadratic B-splines 
 

Four new de Boor points will be generated in each face of the original de Boor net when 

using the applications of these masks. One can get these new de boor points by taking a 

convex combination of the four vertices of each face of the de Boor net. When we 

observe the midpoint of the line segment connecting each vertex to the centroid of a face, 

we can see that the new de Boor points can also be located or replaced directly by the 

midpoint we have talked about above. 

 The situation described above is the special case for rectangle faces. This 

subdivision method can also be used to the generalized case of arbitrary topology control 

12 
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points or meshes. The faces may be n-sided, in a mesh of arbitrary topology, where 

. The centroid of the face can be easily found as the average of its vertices. A new 

control point may be found as the midpoint of the line segment connecting a face’s 

centroid to each of its vertices, as in Figure 3.2. This is how the Doo-Sabin algorithm 

works. 

3≥n

 

 

Figure 3.2 Construction of new control points using the Doo-Sabin algorithm 
 

The above steps are executed repeatedly until the desired smoothness has been 

obtained by the result control points or mesh. Three iterations of the Doo-Sabin algorithm 

are illustrated in Figure 3.3. The faces, edges, and vertices of the old mesh are replaced or 

clipped to form the new mesh at every step. The renewed control points or mesh becomes 

locally rectangular everywhere as the subdivision process goes, except at a certain 

13 
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number of points. These points, also called extraordinary points, correspond to the 

vertices and faces of the original mesh. One can note that, which is very interesting, over 

every group of four rectangles with a valence 4 vertex in common, a biquadratic B-spline 

surface is local and exact representation. As the renewed mesh becomes increasingly 

rectangular or regular, more and more of the surface is exactly represented. However, the 

surface in the neighborhoods of the extraordinary points does not have this explicit 

representation. These regions are considered as holes in the paper of Doo and Sabin in an 

exact representation using biquadratic B-splines. 

 

Figure 3.3 Three iterations of the Doo-Sabin subdivision surfaces 
 

14 
 



www.manaraa.com

 This representation maintains all the properties of piecewise biquadratic B-

splines. Since biquadratic B-splines are -continuous, the surfaces generated by the 

Doo-Sabin algorithm are considered locally -continuous everywhere except at the 

extraordinary points. The refined mesh or the final subdivision surface is guaranteed to 

lie in the convex hull of the original control point mesh, since all new control points are 

found by taking convex combinations of the old control points. And each new control 

point is only dependent on a single face of the control point mesh. Thus, changing a 

control point will affect only a few faces, giving the Doo-Sabin surfaces a local control 

property. And this is also a property of all the approximation method. 

1C

1C

 

The Catmull‐Clark algorithm 

In the same year of 1978, Catmull and Clark also presented an algorithm for 

generating a smooth surface from an arbitrary control point mesh [4]. Their approach is 

used to generalize bicubic B-spline subdivision surfaces instead of biquadratic B-spline 

subdivision surfaces. And since bicubic surfaces are higher order than biquadratic, the 

resulting algorithm is more complex. 

The following picture is the subdivision masks of bicubic B-Splines (Figure 3.4), 

which is used to derive the Catmull-Clark algorithm:  

 

Figure 3.4 Subdivision Masks for bicubic B-splines 
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A new control point, which is also called vertex point, corresponding to each 

vertex of the old control point mesh will be generated when using the application of mask 

A. New points, which called edges points, corresponding to each edge, will be generated 

by the application of masks B, and mask C generates a new point, which is also called 

face point, corresponding to each face of the control point mesh. The geometric 

properties of the subdivision masks used to generate these points may be abstracted to 

control point meshes of arbitrary topology. 

Considering mask C, the rule for computing new face points can be derived. We 

can see that this mask gives equal weight to all the vertices belonging to a face. And this 

can also be considered as computing the centroid of the face. It is obvious that we can 

create a new face point at the centroid of each face of the arbitrary mesh in general. To 

determine the rule for computing new edge points, considering masks of B. We can see 

that these masks generate new edge points as convex combinations of the vertices of the 

two faces adjacent at an edge. The point can also be found by taking the average of the 

centroids of the two adjacent faces along with the midpoint of the shared edge in the view 

of geometric topology. This idea is then easily applied to an arbitrary mesh. Generalizing 

the rules to generate a new vertex point is not that simple. Catmull and Clark determined 

that the vertex point S generated by mask A is found by taking a convex combination of 

three points. These points are: Q , the average of the new face points of all faces sharing 

an old vertex point; R , the average of the midpoints of all old edges incident on the old 

vertex point; , the old vertex point. These three points may be similarly found for each 

vertex of an arbitrary mesh. The initial convex combination Catmull and Clark proposed 

was  

S
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.
4
1

2
1

4
1 SRQS ++=                                                     (3.1) 

Like the new face and edge point rules, the generalization of the new vertex point 

subdivision rule is equivalent to bicubic B-spline subdivision in the special case of a 

rectangular mesh. The rules described above were used by Catmull and Clark to generate 

smooth surfaces from arbitrary meshes initially. Like those of the Doo-Sabin algorithm, 

these surfaces are locally regular except at a constant number of extraordinary points. 

These points correspond to the faces and vertices of the original control point mesh. It 

was observed that in some arbitrary meshes, like the Doo-Sabin algorithm, continuity was 

not maintained at extraordinary points. This was remedied by modifying the 

generalization of the new vertex point rule to take the order of the vertex into account. 

The modified rule is : 

.311 S
N

NR
N

Q
N

S −
++=                                               (3.2) 

 

Where  is the order of the vertex S . This rule generates surfaces that exhibit tangent 

plane continuity at all extraordinary points.  

N

 As the algorithm proceeds, we can note that the mesh becomes increasingly 

regular, like Doo-Sabin algorithm. The surface is exactly representable with bicubic B-

splines over these regions. For this reason, Catmull-Clark subdivision surfaces inherit 

many of the important properties from bicubic B-splines. Catmull-Clark subdivision 

surfaces have the convex hull property, local control and are locally -continuous 

everywhere except at the extraordinary points. A proof that Catmull-Clark surfaces have 

a continuous tangent plane at the extraordinary points was given by Doo and Sabin [5]. 

2C
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 Both the Doo-Sabin and Catmull-Clark algorithms were derived from geometric 

properties of tensor product B-spline subdivision. Other non-tensor product B-spline 

surfaces have appeared since then.  From properties of these surfaces, the Loop algorithm 

analogous to the Doo-Sabin and Catmull-Clark algorithm was derived. 

 

The Loop Algorithm 

 This algorithm generalizes the subdivision of a regular triangle mesh [6].  A 

triangular mesh is a control point mesh whose faces are all triangles. Like the Doo-Sabin 

and Catmull-Clark algorithms, derivation of the generalized subdivision rules for Loop 

algorithm begins with an abstraction of the geometric properties of the subdivision 

masks. These masks are as follows (Figure 3.5): 

 

 

Figure 3.5 Subdivision Masks for triangle Splines 
 

Mask A generates new control points for each vertex, and masks of B generate new 

control points for each edge of the original regular triangular mesh. 

 The masks of B compute the new edge points as convex combinations of the 

vertices of the two triangles that share the edge. In an arbitrary triangular mesh, each 

edge will be shared by two triangles. Therefore, an obvious generalization is to leave this 
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subdivision rule intact. Like the Catmull-Clark algorithm, generalization of a vertex point 

is more difficult. 

 To derive the new vertex point rule, consider mask A. The new vertex point V , 

can be computed as a convex combination of the old vertex, and all old vertices that share 

an edge with it. Alternatively, this same point may be found indirectly as a convex 

combination of two points. These points are: V , the old vertex point, and Q , the average 

of the old points that share an edge with V . The new vertex point is computed as  

QVV
8
3

8
5

+=                                                     (3.3) 

This can be applied to an arbitrary triangular mesh. 

 In the special case of a regular triangulation, the algorithm is equivalent to binary 

subdivision of a surface. Three iterations of the algorithm based on the rules just 

described are shown in Figure 3.6. As subdivision proceeds, the triangular control point 

mesh becomes locally regular, except at a fixed number of extraordinary points. For this 

new algorithm, only extraordinary points correspond to vertices of the original mesh 

rather than its faces. The surface of this algorithm is locally -continuous everywhere, 

except at the extraordinary points. 

2C

 Note that in Figure 3.6, tangent plane continuity is apparently lost at one of the 

extraordinary points. This situation is similar to the one encountered by Catmull and 

Clark in the initial formulation of their algorithm. This may be remedied by considering 

the order of the vertex when taking the convex combination of V  and Q . This results in 

a new vertex point rule of the form: 

QVV NN )1( αα −+=                                                (3.4) 
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Where Nα is a function of the vertex order N . As long as 
8
5

6 =α , the subdivision 

algorithm will be a superset of the subdivision algorithm. If 10 << Nα , the resulting 

surface will lie in the convex hull of the control mesh.  

 

Figure 3.6 Three iterations of triangular subdivision algorithm 
 

Parametrization Methods 

Parametrization of Catmull‐Clark subdivision Surfaces 

In 1998, Jos Stam presented a parametrization method for Catmull-Clark 

subdivision surfaces at arbitrary parameter values [18]. The Catmull-Clark subdivision 

surface and all of its derivatives can be evaluated in terms of a set of eigenbasis functions 
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which only depend on the subdivision scheme, and Jos Stam derived analytical 

expressions for these basis functions. This method allows many algorithms developed for 

parametric surfaces to be applied  to Catmull-Clark subdivision surfaces, which makes 

subdivision surfaces an even more attractive tool for free-form surface modeling. 

The initial mesh used in this method is assumed to be subdivided at least twice, in 

order to isolate the extraordinary vertices so that each face is a quadrilateral and contains 

at most one extraordinary vertex. There is a sample picture of a subdivision patch (see 

Figure 3.7). The valence of the extraordinary vertex is denoted by . The task is then to 

find a surface patch defined over the unit square 

N

),( vus ]1,0[]1,0[ ×=Ω that can be 

evaluated directly in terms of the 82 += NK vertices that influence the shape of the 

patch corresponding to the face. Jos Stam assumes that the surface point corresponding to 

the extraordinary vertex is and that the orientation of )0,0(s Ω is chosen such that 

points outside of the surface.  vu ss ×

 

Figure 3.7 Surface patch near an extraordinary vertex with its control vertices 
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The initial control points set is denoted by matrix ,where 

. After one subdivision, a new set of 

),,( ,01,00 K
T ccC L=

82 += NK 9+= KM control points (see Figure 

3.8) will be generated. Subsets of these new vertices are the control vertices of three 

uniform B-spline patches. Therefore, three-quarters of the surface patch is parametrized, 

and could be evaluated as simple bicubic B-splines (see top left of Figure 3.9). This new 

set of vertices is denoted by and ),,( ,11,11 K
T ccC L= ),,,( ,11,111 MK

TT ccCC L+= . Then, the 

subdivision step is simplified to a multiplication process: 

01 ACC =                                                       (3.5) 

where matrix A  is a subdivision matrix. And it has the following block structure: KK ×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1211

0
SS

S
A                                                    (3.6) 

The additional points needed to evaluate the three B-spline patches are defined using a 

bigger matrix A of size KM × : 

01 CAC =                                                      (3.7) 

where 

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

2221

1211

0

SS
SS

S
A                                                   (3.8) 

The subdivision step of Equation 3.5 can be repeated to create an infinite sequence of 

control vertices:  and 01 CAACC n
nn == − 0

1
1 CAACAC n

nn
−

− == , . 1≥n

22 
 



www.manaraa.com

 

Figure 3.8 Addition of new vertices by applying the Catmull-Clark subdivision rule to the 
vertices in Figure 3.7 

 

 

Figure 3.9 Indices of the control vertices of the three bi-cubic B-spline patches obtained 
from nC  

23 
 



www.manaraa.com

 
 As noted above, for each level , a subset of the vertices of 1≥n nC becomes the 

control vertices of three B-Spline patches. These control vertices can be defined by 

selecting 16 control vertices from nC and storing them in 316× matrices: nknk CPB =, , 

where is a  “picking” matrix and kP M×16 3,2,1=k . Then, the surface patch 

corresponding to each matrix of control vertices is defined as: 

),(),(),( ,, vubPCvubBvus T
k

T
n

T
nknk

r
==                                (3.9) 

Where is the vector containing the 16 cubic B-spline basis functions (see 

Appendix A), and 

),( vub

1,),( ≥Ω∈ nvu 3,2,1=k . We can partition the unit squareΩ into an 

infinite set of tiles { } 3,2,1,1, =≥Ω knn
k , as shown in Figure 3.10. A parametrization for 

is constructed by defining its restriction to each tile to be equal to the B-spline 

patch defined by the control vertices : 

),( vus n
kΩ

nkB ,

)),((),( ,, vutsvus nknkn
k
=

Ω
                                       (3.10) 

The transformation maps the tile onto the unit square . nkt ,
n
kΩ n

kΩ

 

Figure 3.10 Partition of the unit square into an infinite family of tiles 
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 The eigenstructure of matrix A can be written as . Then the subdivided 

control vertices at level n are now equal to 

1−Λ= VVA

0
1

0
11

0
1 ĈVACVVACAAC nnn

n
−−−− Λ=Λ== , 

where . Then equation 3.9 can be rewritten in the following form: 0
1

0
ˆ CVC −=

),()(ˆ),( 1
0, vubVAPCvus T

k
nT

nk
−Λ=                               (3.11) 

By observing that the right most terms in this equation are independent of the control 

vertices and the power n , we can pre-compute this expression and define the following 

three vectors: 

),()(),,( vubVAPkvux T
k=   3,2,1=k                          (3.12) 

The components of these three vectors correspond to a set of K bi-cubic splines. In 

Appendix A we will show how to compute these splines. Now, the equation for each 

patch can be rewritten more compactly as: 

),,(ˆ),( 1
0, kvuxCvus nT

nk
−Λ=   3,2,1=k                          (3.13) 

To make the expression for the evaluation of the surface patch more concrete, let 

denote the rows of . Then the surface patch can be evaluated as: T
ip 0Ĉ

∑
=

−
Ω
=

K

i
inki

n
i pkvutxvus n

k
1

,
1 )),,(()(),( λ                        (3.14) 

 Alternatively, the bi-cubic spline functions can be used to define a set of 

eigenbasis functions for the subdivision. For a given eigenvalue 

),,( kvux

iλ we define the function 

iϕ by its restrictions on the domains  as follows: n
kΩ

)),,(()(),( ,
1 kvutxvu nki

n
ii n

k

−
Ω
= λϕ                                (3.15) 

25 
 



www.manaraa.com

Now, the evaluation of the surface patch given by equation 3.14 can be rewritten exactly 

as: 

∑
=

Ω
=

K

i
ii pvuvus n

k
1

),(),( ϕ                                      (3.16) 

This is the key result of this method. 

 

Parametrization of Doo‐Sabin subdivision Surfaces 

Parametrization of Doo-Sabin subdivision Surfaces is similar to the Jos Stam’s 

method on Catmull-Clark subdivision surfaces. However, we use bi-quadratic B-splines 

in our method instead of bi-cubic B-splines. And the control vertices needed for bi-

quadratic B-splines is 9 instead of 16. 

The initial mesh used in this method is assumed to be subdivided at least once, in 

order to get rid of extraordinary vertices and isolate the extraordinary faces so that each 

patch, which will be described later, contains at most one extraordinary face. There is a 

sample picture of a subdivision patch (see Figure 3.11). The vertex number of the 

extraordinary face is denoted by . The task is then to find a surface patch defined 

over the unit square 

N ),( vus

]1,0[]1,0[ ×=Ω that can be evaluated directly in terms of the 

vertices that influence the shape of the patch corresponding to the face. We 

assume that the surface point corresponding to the original extraordinary vertex is 

and that the orientation of 

5+= NK

)0,0(s Ω is chosen such that vu ss × points outside of the 

surface.  
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Figure 3.11 Surface patch near an extraordinary face with its control vertices 
 

The initial control point set is denoted by matrix ,where 

. After one subdivision, a new set of 

),,( ,01,00 K
T ccC L=

5+= NK 7+= KM control points (see Figure 

3.12) will be generated. Subsets of these new vertices are the control vertices of three 

uniform B-spline patches. Therefore, three-quarters of the surface patch is parametrized, 

and could be evaluate as simple biquadratic B-splines. This new set of vertices is denoted 

by and ),,( ,11,11 K
T ccC L= ),,,( ,11,111 MK

TT ccCC L+= . Then, the subdivision step is 

simplified to a multiplication process: 

01 ACC =                                                       (3.17) 

where matrix A  is a subdivision matrix. And it has the following block structure: KK ×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1211

0
SS

S
A                                                    (3.18) 

The additional points needed to evaluate the three B-spline patches are defined using a 

bigger matrix A of size KM × : 
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01 CAC =                                                      (3.19) 

where 

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

2221

1211

0

SS
SS

S
A                                                   (3.20) 

The subdivision step of Equation 3.17 can be repeated to create an infinite sequence of 

control vertices:  and 01 CAACC n
nn == − 0

1
1 CAACAC n

nn
−

− == , . 1≥n

 

Figure 3.12 Addition of new vertices by applying the Doo-Sabin subdivision rule to the 
vertices in Figure 3.11 

 

 As noted above, for each level , a subset of the vertices of 1≥n nC becomes the 

control vertices of three B-Spline patches. These control vertices can be defined by 

selecting 9 control vertices from nC and storing them in 39× matrices: nknk CPB =, , 
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where is a  “picking” matrix and kP M×9 3,2,1=k . Then, the surface patch 

corresponding to each matrix of control vertices is defined as: 

),(),(),( ,, vubPCvubBvus T
k

T
n

T
nknk

r
==                                (3.21) 

Where is the vector containing the 9 quadratic B-spline basis functions (see 

Appendix B), and 

),( vub

1,),( ≥Ω∈ nvu 3,2,1=k . We can partition the unit squareΩ into an 

infinite set of tiles { } 3,2,1,1, =≥Ω knn
k , as shown in Figure 3.10. A parametrization for 

is constructed by defining its restriction to each tile to be equal to the B-spline 

patch defined by the control vertices : 

),( vus n
kΩ

nkB ,

)),((),( ,, vutsvus nknkn
k
=

Ω
                                       (3.22) 

The transformation maps the tile onto the unit square . nkt ,
n
kΩ n

kΩ

 The eigenstructure of matrix A can be written as . Then the subdivided 

control vertices at level n are now equal to 

1−Λ= VVA

0
1

0
11

0
1 ĈVACVVACAAC nnn

n
−−−− Λ=Λ== , 

where . Then equation 3.21 can be rewritten in the following form: 0
1

0
ˆ CVC −=

),()(ˆ),( 1
0, vubVAPCvus T

k
nT

nk
−Λ=                               (3.23) 

By observing that the most right-side terms in this equation are independent of the control 

vertices and the power n , we can pre-compute this expression and define the following 

three vectors: 

),()(),,( vubVAPkvux T
k=   3,2,1=k                          (3.24) 

The components of these three vectors correspond to a set of K  bi-quadratic splines. In 

Appendix B we will show how to compute these splines. Now, the equation for each 

patch can be rewritten more compactly as: 
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),,(ˆ),( 1
0, kvuxCvus nT

nk
−Λ=   3,2,1=k                          (3.25) 

To make the expression for the evaluation of the surface patch more concrete, let 

denote the rows of . Then the surface patch can be evaluated as: T
ip 0Ĉ

∑
=

−
Ω
=

K

i
inki

n
i pkvutxvus n

k
1

,
1 )),,(()(),( λ                        (3.26) 

 Alternatively, the bi-quadratic spline functions can be used to define a 

set of eigenbasis functions for the subdivision. For a given eigenvalue 

),,( kvux

iλ we define the 

function iϕ by its restrictions on the domains  as follows: n
kΩ

)),,(()(),( ,
1 kvutxvu nki

n
ii n

k

−
Ω
= λϕ                                (3.27) 

Now, the evaluation of the surface patch given by equation 3.26 can be rewritten exactly 

as: 

∑
=

Ω
=

K

i
ii pvuvus n

k
1

),(),( ϕ                                      (3.28) 

This is the final result of our method. 
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Chapter 4 Surface Reconstruction using Doo-Sabin Subdivision Surfaces 

 As mentioned in Chapter 1, there are two major steps in the new surface 

reconstruction process. First we apply an efficient surface reconstruction method to 

producing a polyhedral approximation to the given data points, then we find an 

interpolatory surface for the obtained polyhedral approximation in the first step. There 

are many efficient approaches that we can use for the first step [1, 2, 3]. In this thesis the 

polyhedral approximation obtained from the first step is regarded as the control mesh of a 

Doo-Sabin subdivision surface and this chapter focuses on how to construct an 

interpolating surface for the control mesh. 

 

Polyhedral Approximation 

 Doo-Sabin subdivision scheme is used for the first step. In this subdivision 

scheme, we use the Catmull quadratic method. New polygons are built from the old mesh 

in the following way. An edge point is formed from the midpoint of each edge. A face 

point is formed as the centroid of each polygon of the mesh. Finally, each vertex in the 

new mesh is formed as the average of a vertex in the old mesh, a face point for a polygon 

that is incident to that old vertex, and the edge points for the two edges that belong to that 

polygon and are adjacent to that old vertex. 

 The new vertices then are connected. There will be two vertices along each side 

of each edge in the old mesh, by construction. These pairs are connected, forming 

quadrilaterals across the old edges. Within each old polygon, there will be as many new 

vertices as there were vertices in the polygon. These are connected to form a new, smaller, 

inset polygon. And finally, around each old vertex there is a new vertex in the adjoining 
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corner of each old polygon. These are connected to form a new polygon with as many 

edges as there were polygons around the old vertex. The new mesh, therefore, will create 

quadrilaterals for each edge in the old mesh, will create a smaller m -sided polygon for 

each m -sided polygon in the old mesh, and will create an n -sided polygon for each n -

valence vertex. After one application of the scheme all vertices have a valence of four. So, 

subsequent applications will create quadrilaterals for the vertices only. All n -sided 

polygons are retained in the subdivision process, and shrink to extraordinary points as the 

subdivision scheme is repeatedly applied. 

 For a vertex V of valance n (see Figure 4.1), if its adjacent edge points are , 

 and its adjacent face points are , 

iE

ni ≤≤1 i
jF 31,1 −≤≤≤≤ imjni , where is the 

number of edges in the th adjacent face, then after one subdivision we have 

im

i

∑
−

=
+ ++++++=
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1
1
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4
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4
1

8
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1
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i
i

ii
i F

m
E

m
E

m
V

m
V                    (4.1) 

where , is one of the newly generated vertex points around vertex V after one 

subdivision (see Figure 4.1). 

'
iV ni ≤≤1

After each subdivision we have an n -sided polygon around vertex V , which will 

remain to be n -sided in the subdivision process, and shrink to a limit point  as the  

scheme is repeatedly applied. The limit point corresponding to V on the limit surface can 

be calculated as follows: 

∑
=

∞ =
n

i
iV

n
V

1

'1                                                       (4.2) 

The above formula can be expanded and hence can be more precisely rewritten as 

follows: 

∞V
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Figure 4.1 A vertex V of valence n and the new, adjacent vertex points generated after 
one Doo-Sabin subdivision. 

 

Progressive Interpolation 

 For a given mesh 0M , we will find a new mesh M  whose Doo-Sabin limit 

surface interpolates all vertices of 0M . Instead of solving a global system of linear 

equations, we develop a progressive iterative method which only locally manipulates 

vertices of the control mesh by an affine operation at each level of iteration. The iteration 

process is described as follows. 

 Initially, for each vertex of0V 0M , we compute the difference vector between this 

vertex and its limit point on the Doo-Sabin surface calculated from the equation (4.3), 0S
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                                                    (4.4) 000
∞−= VVD

and add the differences to the vertex . 0D 0V

001 DVV +=                                                    (4.5) 

Therefore, we get a new control mesh 1M whose vertices are computed as . By 

iteratively repeating this process, we get a sequence of control meshes 

1V

0M , 1M , L2M . 

 In general, if ,(kV ∞<≤ k0 ), is the new location of vertex V after k iterations of 

the above process and kM is the control mesh consists of all new kV then we denote the 

Doo-Sabin limit surface of k

s, 

M or W ndkS . e first compute the distance between 0V a  the 

limit point  kV∞  of kV on kS : 

kk VVD ∞−= 0                                                   (4.6) 

We then add this distance to  to get   as follows: kV 1+kV

kkk DVV +=+1                                                 (4.7) 

The set of new vertices is called 1+kM . 

 This process generates a sequence of control meshes kM and a sequence of 

corresponding Doo-Sabin surfaces . converges to an interpolating surface of kS kS 0M if 

the distance between and kS 0M converges to zero (i.e., ). Therefore the key task 

here is to prove that converges to zero when  tends to infinity. 

0→kD

kD k
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Chapter 5  Proof of Convergence 

To prove the convergence of the above iterative process, we need a lemma about the 

eigenvalues of the product of positive definite matrices. 

 

Lemma 1 Eigenvalues of the product of positive definite matrices are positive. 

 

The proof of Lemma 1 follows immediately from the fact that if P and are 

square matrices of the same dimension, then and have the same eigenvalues (see, 

e.g., [18], p.14). 

Q

PQ QP

As mentioned above, to prove that the iterative interpolation process converges, 

we must prove that the difference  approaches zero when tends to infinity. kD k

Note that kD can be expanded as follows: 
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Equation (5.1) can be represented in a compact matrix form as follows: 
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where is the number of vertices in the given mesh, m I is an identity matrix of size 

, and mm× B is a matrix of the following form: 
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Each entry of matrix B can be directly derived from Equation (4.3). Now, to prove 

approaches zero when k  tends to infinity, we just need to show that 

approaches zero when  tends to infinity. 

kD

kBI )( − k

Obviously, , limit points of the mesh control points ,  lying on the Doo-

Sabin subdivision surface , now can be represented in matrix form as . Note 

that 

1+iV iV

iS ii BVV =+1

B can be decomposed into the product of a diagonal matrix Λ  and a symmetric 

matrix T as follows: 

 

TB Λ=                                                           (5.4) 
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where is of the following form: Λ
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and T is of the following form: 
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 Note that if is an edge of a mesh, then is an edge of this mesh as 

well; if is an edge of a face, then so is . In other words, the relationship 

between two edge vertices or two face vertices is symmetric. It is then easy to see that 

),( ji VV ),( ij VV

),( ji VV ),( ij VV

T is symmetric. Furthermore, it can be proved that matrix T is positive definite. 
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Proposition 1 The matrix T is positive definite. 

Proof: It is well-known that a symmetric and strictly diagonally dominant matrix 

with positive diagonal entries is a positive definite matrix. Because all the coefficients in 

the Doo-Sabin subdivision process are non-negative, it is easy to check that the diagonal 

entries of T are positive numbers. Therefore we just need to show that T is a strictly 

diagonally dominant matrix. According to equation (4.3), each row of matrix T satisfies: 
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Hence, T is strictly diagonally dominant and, consequently, T is positive definite. 

 With the above results, we are ready to prove the convergence of the iterative 

interpolation process. 

 

Proposition  2 The  iterative  interpolation  process  for Doo‐Sabin  subdivision  surface  is 

convergent. 

Proof: As mentioned above, we just need to prove that approaches zero 

when tends to infinity, where 

kBI )( −

k B is defined above and I is an identity matrix. Recall that 

matrix  is a symmetric positive definite matrix, and so is the diagonal matrixT Λ  . 

According to Lemma 1, TB Λ= , we can conclude that B only has positive eigenvalues. 

Since Doo-Sabin subdivision scheme satisfies the convex hull property, we have 1=
∞

B , 
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which implies all eigenvalue iλ  of B satisfy 1≤iλ . Therefore, all eigenvalues of 

B satisfy 10 ≤< iλ . Based on this result, it is easy to see that the eigenvalues of matrix 

satisfy )( BI − 110 <−≤ iλ . Consequently, approaches zero when k tends to 

infinity. The convergence of the iterative interpolation process for Doo-Sabin subdivision 

surfaces then is a direct consequence. 

kBI )( −
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Chapter 6  Implementation Results 

Implementation of the surface reconstruction technique using Doo-Sabin 

subdivision surfaces is done on a Windows platform using OpenGL as the supporting 

graphics system. Due to the combination of local and global advantages, the iterative 

interpolation method is very efficient and can handle very large data sets easily. Besides, 

our experiment results show that our approach can generate visually pleasing surfaces 

though there is no fairness parameter in the interpolation scheme. 

Model # of data points #of vertices in poly. Approx. # of iterations Error

CubeHC 81920 7666 9 10-6

Goblet 129280 8082 7 10-6

Rockarm 203904 13984 5 10-6

Beethoven 262016 16378 5 10-6

 
Table 6.1 Doo-Sabin surface based progressive interpolation: test results 

 
Many examples have been tested and some examples are presented in Figure 6.1, 

6.2, 6.3, 6.4. In these figures, the input 3D data points for these examples are listed in the 

first row, the corresponding polyhedral approximations, obtained after applying the 

surface reconstruction method [2], are listed in the second row, and the reconstructed -

continuous Doo-Sabin subdivision surfaces which interpolate the corresponding 

polyhedral approximations are shown in the third row. We also tabulate some of the 

testing parameters (see Table 6.1), such as the number of data points in the input model, 

the number of vertices in the polyhedral approximation obtained from applying a 

traditional surface reconstruction method [2, 3], the number of iterations used in the 

1C
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iterative interpolation process to get the interpolating surface and error tolerance used to 

stop the iteration. 

Note that the number of data points in the input 3D model is not the same as the 

number of vertices in the obtained polyhedral approximation. This is because we made 

some simplification such that the obtained polyhedral approximations are not as dense as 

the input data set and meanwhile, without losing much precision (by tolerating a small 

given error, say 10-6). 
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(a) Data Points 

 

 

 (b) Polyhedral Approximation 

 

 

(c) Reconstruction by Interpolation 

 

Figure 6.1 CubeHC 
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(a) Data Points 

 

 

 (b) Polyhedral Approximation 

 

 

(c) Reconstruction by Interpolation 

 

Figure 6.2 Goblet 
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(a) Data Points 

 

 

 (b) Polyhedral Approximation 

 

 

(c) Reconstruction by Interpolation 

 

Figure 6.3 Rockarm 
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(a) Data Points 

 

 

 (b) Polyhedral Approximation 

 

 

(c) Reconstruction by Interpolation 

 

Figure 6.4 Beethoven 
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Chapter 7  Concluding Remarks 

A new technique for the reconstruction of a smooth surface from a set of 3D 

sample points is presented. The reconstructed surface is not represented by a polyhedral 

approximation, but an everywhere -continuous subdivision surface which interpolates 

all the sample points. Meanwhile all the data points are guaranteed to precisely lie on the 

reconstructed surface. The reconstruction process employs a two-step approach: a surface 

reconstruction step and a surface interpolation step. The first step produces a polyhedral 

approximation to the sampled surface from the sample points. The second step produces a 

Doo-Sabin subdivision surface that interpolates all the sample points. The second step is 

the focus of this thesis. The interpolating surface is generated by iteratively modifying the 

vertices of the polyhedral approximation 

1C

M  until a control mesh M , whose Doo-Sabin 

subdivision surface interpolates M , is reached. It is proved that, for any mesh M  with 

any size and any topology, the iterative process is convergent with Doo-Sabin 

subdivision surfaces. Therefore the surface reconstruction process is well-defined. The 

new technique has the advantages of both a local method and a global method. Therefore 

it can handle data set of any size while capable of generating a faithful approximation of 

the sampled surface no matter how complicated the shape and topology of the surface. 

The surface reconstruction process can also reproduce special features such as edges and 

corners faithfully. 
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Appendices 

A. Bi‐cubic splines 

In this appendix [18] we compute the bi-cubic spline pieces of the eigen 

basis defined in Equation 3.12. The vector contains the 16 tensor B-spline basis 

functions ( ):

),,( kvux

),( vub

16,,1L=i )()(),( 4/)1(4)%1( vNuNvub ii −−= , where “%” and “/” stand for the 

remainder and the division respectively. The functions are the uniform B-spline 

basis functions: 
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The projection matrices , and are defined by introducing the following three 

permutation vectors (see Figure 3.10): 
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Since for the case the vertices and are the same vertex, instead of 8 

for . Using these permutation vectors we can compute each bi-cubic spline as 

follows: 
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where and V are the eigenvectors of the subdivision matrix. Ki ,,1L=
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B. Bi‐quadratic splines 

In this appendix we compute the bi-quadratic spline pieces of the eigen 

basis defined in Equation 3.24. The vector contains the 9 tensor B-spline basis 

functions ( ):

),,( kvux

),( vub

9,,1L=i )()(),( 3/)1(3)%1( vNuNvub ii −−= , where “%” and “/” stand for the 

remainder and the division respectively. The functions are the uniform B-spline 

basis functions: 
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The projection matrices , and are defined by introducing the following three 

permutation vectors (see Figure 3.10): 

1P 2P 3P

)10,11,12,1,4,5,2,1,2(
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Using these permutation vectors we can compute each bi-quadratic spline as follows: 
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where and V are the eigenvectors of the subdivision matrix. Ki ,,1L=
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